Non-Invasive Respiratory Gas Monitoring

Bryan E. Bledsoe, DO, FACEP
The George Washington University Medical Center

Endorsements
This educational module has been endorsed by the following professional organizations:

- Roy Alson, MD, PhD, FACEP
- James Augustine, MD, FACEP
- Edward Dickinson, MD, FACEP
- Marc Eckstein, MD, FACEP
- Steven Katz, MD, FACEP
- Mike McEvoy, PhD, RN, EMT-P
- Joe A. Nelson, DO, MS, FACOEP, FACEP
- Ed Racht, MD
- Mike Richards, MD, FACEP
- Keith Wesley, MD, FACEP
- Paula Willoughby-DeJesus, DO, MHPE, FACOEP

Respiratory Gas Physiology

Respiratory Gasses

- Normal Atmospheric Gasses:
 - Oxygen (O₂)
 - Carbon Dioxide (CO₂)
 - Nitrogen (N₂)
 - Water Vapor (H₂O)
- Trace Gasses:
 - Argon (Ar)
 - Neon (Ne)
 - Helium (He)

Most important respiratory gasses:
- Oxygen (O₂)
- Carbon Dioxide (CO₂)
Respiratory Gasses

Respiratory gasses often represented based upon their partial pressures.

Dalton’s Law:
"The total pressure in a container is the sum of partial pressures of all gasses in the container."

Determining partial pressures:
\[P_A = X_A \times P \]

Where:
- \(P_A \) = pressure of the gas
- \(X_A \) = mole fraction of the gas
- \(P \) = total pressure of the mixture

\[PO_2 = 0.2095 \times 760 \text{ mm Hg} \]
\[PO_2 = 159.22 \text{ mm Hg} \]

Partial pressure of oxygen in atmosphere at sea level = 159 mm Hg

Atmospheric Gasses

<table>
<thead>
<tr>
<th>GAS†</th>
<th>PRESSURE (mm Hg)</th>
<th>PERCENTAGE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen (N₂)</td>
<td>593.408</td>
<td>78.08</td>
</tr>
<tr>
<td>Oxygen (O₂)</td>
<td>159.220</td>
<td>20.95</td>
</tr>
<tr>
<td>Argon (Ar)</td>
<td>7.144</td>
<td>0.94</td>
</tr>
<tr>
<td>Carbon Dioxide (CO₂)</td>
<td>0.288</td>
<td>0.03</td>
</tr>
<tr>
<td>Neon (Ne)</td>
<td>0.013</td>
<td>0.0018</td>
</tr>
<tr>
<td>Helium (He)</td>
<td>0.003</td>
<td>0.0005</td>
</tr>
<tr>
<td>TOTAL</td>
<td>760</td>
<td>100</td>
</tr>
</tbody>
</table>

† = dry air at sea level.

Respiratory Gasses

Oxygen

- Odorless.
- Tasteless.
- Colorless.
- Supports combustion.
- Present in the atmosphere as a diatomic gas (O₂).
- Necessary for animal life.

Derived from plant photosynthesis:
- Algae (75%).
- Terrestrial Plants (25%).
- Oxygen atom must share electrons for stability.
Non-Invasive Respiratory Gas Monitoring Module

Carbon Dioxide
- Colorless.
- Sour taste at high concentrations.
- Found in very low concentrations in fresh air.
- Asphyxiating.

Abnormal Respiratory Gasses
- Carbon monoxide (CO)

Carbon Monoxide
- Colorless
- Odorless
- Tasteless
- Results from incomplete combustion of carbon-containing compounds.
- Heavier than air.

Respiratory Gas Transport
- Oxygen
 - 97% reversibly bound to hemoglobin.
 - 3% dissolved in plasma.
- Carbon Dioxide
 - 70% as bicarbonate (HCO_3^-).
 - 23% reversibly bound to hemoglobin.
 - 7% dissolved in plasma.

Hemoglobin
- Protein-Iron Complex.
- Transports oxygen to peripheral tissues.
- Removes a limited amount of carbon dioxide from the peripheral tissues.
Non-Invasive Respiratory Gas Monitoring Module

Hemoglobin
- Human hemoglobin is made of various sub-units:
 - 2 α sub-units
 - 2 β sub-units
 - 4 iron-containing heme structures.

Hemoglobin Binding Sites
- Deoxyhemoglobin: Heme is in Fe²⁺ state and domed. Can bind oxygen. Also called the "T" state.
- Oxyhemoglobin: Heme is in Fe³⁺ state and planar. Oxygen bound. Also called the "R" state.

Abnormal Hemoglobin States
- Carboxyhemoglobin
- Methemoglobin

Hemoglobin
- The binding of oxygen changes the conformation (shape) of the hemoglobin molecule.
- Deoxyhemoglobin is converted to oxyhemoglobin.

Carboxyhemoglobin (COHb)
- Results from the binding of CO to hemoglobin following CO exposure.
- Some always present in smokers.
Carboxyhemoglobin (COHb)
- CO has 250 times the affinity for hemoglobin as does O₂.
- CO displaces O₂ from hemoglobin.
- CO can be displaced by high-concentration O₂.
- Half-life is 4-6 hours.

Methemoglobin
- Heme must be in the ferrous (Fe²⁺) state to bind O₂.
- Methemoglobin is hemoglobin in the ferric (Fe³⁺) state and cannot bind O₂.
- Normally < 1% of hemoglobin is methemoglobin.
- High levels lead to hypoxemia.

Methemoglobin
- Hereditary:
 - Hemoglobin M
 - Enzyme deficiency
- Acquired:
 - Nitrates
 - Nitrites
 - Dyes
 - Sulfonamides
 - Lidocaine
 - Benzocaine

Oxygen Saturation
- Hemoglobin oxygen saturation is directly related to the partial pressure of oxygen in the blood (PO₂).
- Venous blood saturation.
- Arterial blood saturation.

Factors Affecting Saturation
- Decreased saturation.
 - Decreased pH (acidosis).
 - Increased CO₂.
 - Increased temperature.
 - Increased BPG (2,3-biphosphoglycerate)
- Increased saturation.
 - Increased pH (alkalosis)
 - Decreased CO₂.
 - Decreased temperature.
 - Decreased BPG (2,3-biphosphoglycerate)

2,3-biphosphoglycerate
- Aids in oxygen release in the peripheral tissues.
- Higher levels found in people who live at high altitudes.
- Helps mitigate the effects of hypoxia.
Non-Invasive Respiratory Gas Monitoring Module

Carbon Dioxide Transport
- Majority of CO₂ transported in the form of bicarbonate ion (HCO₃⁻).

\[\text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{CO}_3 \rightarrow \text{H}^+ + \text{HCO}_3^- \]

Carbonic Anhydrase increases speed of reaction 5,000 fold.

Bohr Effect
- Increases in CO₂ levels in the blood cause oxygen to be displaced from hemoglobin.
- Increases oxygen transport.

Haldane Effect
- Binding of oxygen to hemoglobin tends to displace CO₂.
- Oxyhemoglobin is more acidic than deoxyhemoglobin:
 - Promotes removal of CO₂ in the alveoli.
 - Promotes release of hydrogen ions which combine with bicarbonate ions to form H₂O and CO₂ which are eliminated.

Respiratory Gas Measurement
- Arterial Blood Gas Sampling
- Pulse Oximetry
- Capnography
- Transcutaneous CO₂ Monitoring
Non-Invasive Respiratory Gas Monitoring Module

Arterial Blood Gasses
- Gold standard for respiratory gas monitoring.
- Invasive
- Expensive
- Painful
- Difficult

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.35-7.45</td>
</tr>
<tr>
<td>PO$_2$</td>
<td>80-100 mm Hg</td>
</tr>
<tr>
<td>PCO$_2$</td>
<td>35-45 mm Hg</td>
</tr>
<tr>
<td>HCO$_3^-$</td>
<td>22-26 mmol/L</td>
</tr>
<tr>
<td>BE</td>
<td>-2 to +2</td>
</tr>
<tr>
<td>SaO$_2$</td>
<td>> 95%</td>
</tr>
</tbody>
</table>

Arterial Blood Gasses
- Excellent diagnostic tool.
- Impractical in the prehospital setting.

OXYGEN

Pulse Oximetry
- Introduced in early 1980s.
- Non-invasive measurement of oxygen saturation.
- Safe
- Inexpensive

Pulse Oximetry
- How it works:
 - Probe is placed over a vascular bed (finger, earlobe).
 - Light-emitting diodes (LEDs) emit light of two different wavelengths:
 - Red = 660 nm
 - Infrared = 940 nm

Pulse Oximetry
- Some light is absorbed by:
 - Arterial blood
 - Venous blood
 - Tissues
- Light that passes through the tissues is detected by a photodetector.

© Brook Wainwright
Non-Invasive Respiratory Gas Monitoring Module

Pulse Oximetry
- Only inflow of blood is used to determine SpO₂.
- Hence the name “Pulse Oximetry”
- Hb and HbO₂ absorb light and different rates due to color and conformation.

Pulsatilie Flow
- This is the band used to measure SpO₂.

Oximetry Probe Placement
- Finger
- Earlobe
- Heel (neonates)

Oximetry Probe Placement
- Accuracy falls when LEDs and photoreceptors poorly aligned.
- Accuracy decreases with lower pulse oximetry readings.

Pulse Oximetry
- Some manufacturers use reflective oximetry for monitoring.
- LEDs and photodetectors in same electrode.
- Light reflected from the tissues and detected by photodetectors and findings interpreted by the software in the oximeter.
- Can be used on forehead or back.
Non-Invasive Respiratory Gas Monitoring Module

Pulse Oximetry
- HbO₂ absorbs more infrared light than Hb.
- Hb absorbs more red light than HbO₂.
- Difference in absorption is measured.
- Ratio of absorbance matched with SpO₂ levels stored in the microprocessor.

Perfusion Index
- Reflects the pulse strength at the monitoring site.
- Ranges from 0.02% (very weak pulse strength) to 20% (very strong pulse strength).
- Helps determine best site to place probe.

Pulse Oximetry
- SaO₂ used for oxygen saturation readings derived from arterial blood gas analysis.
- SpO₂ used for oxygen saturation readings from pulse oximetry.
- SpO₂ and SaO₂ are normally very close.

Pulse Oximetry
- Pulse oximetry tells you:
 - SpO₂
 - Pulse rate
- Pulse oximetry cannot tell you:
 - O₂ content of the blood
 - Amount of O₂ dissolved in blood
 - Respiratory rate or tidal volume (ventilation)
 - Cardiac output or blood pressure.

Who Should Use?
- Any level of prehospital care provider who administers O₂.
- First Responders
- EMTs
- EMT-Intermediates
- Paramedics

Prehospital Indications
1. Monitor the adequacy of arterial oxyhemoglobin saturation (SpO₂).
2. To quantify the SpO₂ response to an intervention.
3. To detect blood flow in endangered body regions (e.g., extremities).
Limitations

- Oximetry is NOT a measure of ventilation (EtCO₂ a better measure of ventilation).
- Oximetry may lag behind hypoxic events.
- Oximetry is not a substitute for physical examination.
- Very low saturation states may be inaccurate due to absence of measured SpO₂ levels in the database.

First-Generation Oximeter Problems

- False Readings:
 - Hypotension.
 - Hypothermia.
 - Vasoconstriction.
 - Dyes/pigments (e.g., nail polish).
 - Movement may cause false reading in absence of pulse.
- Abnormal hemoglobin:
 - COHb.
 - METHb.
- Oximeter can’t perform:
 - Bright ambient lighting.
 - Shivering.
 - Helicopter transport.

First-Generation Oximeter Problems

- Motion, noise, and low perfusion states can cause artifacts and false oximetry readings.
- These have been eliminated or minimized in second-generation oximeters.

Second-Generation Technology

- Newer technology uses signal processing to minimize artifacts and false readings:
 - Adaptive Filters
 - Signal Processing Algorithms
 - Improved Sensors

Second-Generation Technology

- Technology prevents:
 - Motion artifact.
 - False readings during low-flow states.
 - False bradycardias.
 - False hypoxemias.
 - Missed desaturations.
 - Missed bradycardias.
 - Data dropouts.
 - Effects of dyshemoglobins.

Myths

- Age affects SpO₂
- Gender affects SpO₂
- Anemia affects SpO₂
- SpO₂ inaccurate in dark-skinned individuals.
- Jaundice affects SpO₂.
Non-Invasive Respiratory Gas Monitoring Module

Prehospital Usage

- Assure scene safety.
- Initial assessment.
- ABCs
- Apply oxygen when appropriate (either with or after oximetry).
- Secondary Assessment
- Ongoing monitoring.

Always treat the patient and not the oximeter.

Reading the Oximeter

- SpO2 (%)
- PI (%)
- Pulse Rate (bpm)

What Does it Mean?

<table>
<thead>
<tr>
<th>SpO2 READING (%)</th>
<th>INTERPRETATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>95 – 100</td>
<td>Normal</td>
</tr>
<tr>
<td>91 – 94</td>
<td>Mild Hypoxemia</td>
</tr>
<tr>
<td>86 – 90</td>
<td>Moderate Hypoxemia</td>
</tr>
<tr>
<td>< 85</td>
<td>Severe Hypoxemia</td>
</tr>
</tbody>
</table>

Interventions

<table>
<thead>
<tr>
<th>SpO2 READING (%)</th>
<th>INTERPRETATION</th>
<th>INTERVENTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>95 – 100</td>
<td>Normal</td>
<td>Change FiO2 to maintain saturation.</td>
</tr>
<tr>
<td>91 – 94</td>
<td>Mild Hypoxemia</td>
<td>Increase FiO2 to increase saturation.</td>
</tr>
<tr>
<td>86 – 90</td>
<td>Moderate Hypoxemia</td>
<td>Increase FiO2 to increase saturation. Assess and increase ventilation.</td>
</tr>
<tr>
<td>< 85</td>
<td>Severe Hypoxemia</td>
<td>Increase FiO2 to increase saturation. Increase ventilation.</td>
</tr>
</tbody>
</table>

Oximetry to Assess Circulation

- Oximeter probe can be placed onto tissue distal to an injury to detect circulation.
- Oximeter can monitor distal circulation with fractures and crush injuries.
- Clinical correlation always needed.
Non-Invasive Respiratory Gas Monitoring Module

CARBON DIOXIDE

End-Tidal CO\(_2\) Monitoring
- CO\(_2\) cannot be measured with the same technology used in oximetry.
- CO\(_2\) binds to a different site on hemoglobin compared to O\(_2\).
- No hemoglobin color change.
- No hemoglobin conformation change.
- Carbaminohemoglobin cannot be distinguished from deoxyhemoglobin via oximetry.

End-Tidal CO\(_2\) Monitoring
- CO\(_2\) can be non-invasively monitored through measurement of exhaled air.
- Sensors available for endotracheal tubes and for non-intubated patients.

End-Tidal CO\(_2\) Monitoring
- Exhaled CO\(_2\) detected with pH sensitive paper or infrared spectography.
- Respiratory cycle results in a capnogram.
- End-tidal CO\(_2\) (EtCO\(_2\)) is the maximum amount of exhaled CO\(_2\) at the end of respiration.

End-Tidal CO\(_2\) Monitoring
- Capnography provides information about ventilation.
- Normal EtCO\(_2\):
 - ~ 5%
 - ~ 35-37 mm Hg
- Gradient (PaCO\(_2\) and EtCO\(_2\)): 5-6 mm Hg
- EtCO\(_2\) can be used to estimate PaCO\(_2\) in patients with normal lungs.

Indications:
- Endotracheal tube placement.
- To determine the adequacy of ventilation.
- Continuous monitoring of a critical patient where ABGs may not be available.
- To maintain a specific carbon dioxide level (e.g., brain injury).
Non-Invasive Respiratory Gas Monitoring Module

End-Tidal CO₂ Monitoring
- Elevated or continually rising:
 - Increased CO₂ production (e.g., fever, seizures).
 - Decreased alveolar ventilation (e.g., CNS depression, ↓ \(V_{\text{min}} \), muscular disorder).
 - Equipment malfunction (e.g., bad sensor).

End-Tidal CO₂ Monitoring
- Lowered of continually diminishing:
 - Decreased CO₂ production (e.g., hypothermia, cardiac arrest, pulmonary embolism).
 - Increased alveolar ventilation (e.g., tachypnea, hyperpnea, ↑ \(V_{\text{min}} \)).
 - Equipment malfunction (e.g., obstruction of ventilation system, misplaced ET tube, bad sampling head).

Transcutaneous CO₂ Monitoring
- Technology available for almost 30 years.
- Primarily used in neonates.
- Transcutaneous O₂ often available.
- Correlates to PCO₂.
- Probe is heated and must be moved often.
- Measurements based upon pH.

CARBON MONOXIDE

Carbon Monoxide
- Carbon monoxide (CO) is the leading cause of poisoning deaths in industrialized countries.
- ~ 3,800 people in the US die annually from CO poisoning.

Carbon Monoxide
- CO results from the incomplete combustion of carbon-based fuels.
- It is odorless, colorless and tasteless.
- CO is heavier than air and tends to accumulate in the lower aspect of structures.
Carbon Monoxide

- CO detection previously required hospital-based ABGs to measure COHb.
- Technology now available to detect COHb levels in the prehospital and ED setting.

CO-Oximetry

- CO evaluation should be routine at all levels of EMS and the fire service.
- All field personnel should be educated in use of the oximeter and CO-oximeter.

Cherry red skin color not always present and, when present, is often a late finding.

COHb levels do not always correlate with symptoms nor predict sequelae.

<table>
<thead>
<tr>
<th>Severe</th>
<th>41 - 59%</th>
<th>Palpitations, dysrhythmias, hypotension, myocardial ischemia, cardiac arrest, respiratory arrest, pulmonary edema, seizures, coma.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatal</td>
<td>> 60%</td>
<td>Death</td>
</tr>
</tbody>
</table>

CO binds 250 times stronger than O₂

Only very high concentration of O₂ can displace CO molecule

- Cherry red skin color not always present and, when present, is often a late finding.
- COHb levels do not always correlate with symptoms nor predict sequelae.

Missed CO poisoning is a significant legal risk for EMS and fire service personnel.
Non-Invasive Respiratory Gas Monitoring Module

CO-Hb Levels in Persons 3-74 Years

<table>
<thead>
<tr>
<th>Smoking Status</th>
<th>% COHb (mean ± σ)</th>
<th>% COHb (98th percentile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonsmokers</td>
<td>0.83 ± 0.67</td>
<td>< 2.50</td>
</tr>
<tr>
<td>Current Smokers</td>
<td>4.30 ± 2.55</td>
<td>≤ 10.00</td>
</tr>
<tr>
<td>All persons combined</td>
<td>1.94 ± 2.24</td>
<td>≤ 9.00</td>
</tr>
</tbody>
</table>

Treatment

- Treatment is based on the severity of symptoms.
- Treatment generally indicated with SpCO > 12-15%.
- High-concentration O2 should be administered to displace CO from hemoglobin.
- Be prepared to treat complications (e.g., seizures, cardiac ischemia).

Treatment

- Prehospital CPAP can maximally saturate hemoglobin and increase oxygen solubility.
- Strongly suggested for moderate to severe poisonings.

Treatment

- Efficacy of hyperbaric oxygen therapy (HBO) is a matter of conjecture although still commonly practiced.
- Generally reserved for severe poisonings.
- May aid in alleviating tissue hypoxia.

Treatment Algorithm

CO Poisoning Considerations

- Significant and evolving body of literature now suggests that there are numerous long-term and permanent sequelae from CO poisoning.
CO Poisoning Considerations
- Fetal hemoglobin has a much greater affinity for CO than adult hemoglobin.
- Pregnant mothers may exhibit mild to moderate symptoms, yet the fetus may have devastating outcomes.

CO Poisoning
- Remember, CO poisoning is the great imitator.
- Missed CO exposure often leads to death and disability.
- CO is a particular risk for firefighters.

A simple COHb reading can save a life and prevent long-term problems.

Methemoglobin
- METb is hemoglobin with heme in the Fe³⁺ state.
- Cannot bind O₂.
- SpMET levels usually < 1% (Range 1-3%)
- Reflects hemoglobin at the end of its functional life.
- Results in dark reddish-brown blood.
- Most frequently seen in children < 4 months (blue baby).

Methemoglobinemia
- As SpMET levels increase, a functional anemia occurs (total Hb normal but significant percentage of Hb non-functional).
- Cyanosis begins (usually around lips) when SpMET >10 - 15%.
- Organs with high O₂ demands (e.g., CNS, cardiovascular system) manifest toxicity first.

Methemoglobinemia Causes
- Inherited:
 - Hemoglobin disorder (HgM).
 - Enzyme disorders (e.g., G6PD deficiency).
- Acquired:
 - Nitrites
 - Nitrates
 - Sulfonamides
 - Lidocaine
 - Benzocaine
 - Certain aromatic hydrocarbons
 - Dyes
Non-Invasive Respiratory Gas Monitoring Module

Symptoms

<table>
<thead>
<tr>
<th>SpMET</th>
<th>Symptom</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3%</td>
<td>Normal, asymptomatic</td>
</tr>
<tr>
<td>3-15%</td>
<td>Slight grayish blue skin discoloration</td>
</tr>
<tr>
<td>15-20%</td>
<td>Asymptomatic, but cyanotic.</td>
</tr>
<tr>
<td>25-50%</td>
<td>Headache, dyspnea, confusion, weakness, chest pain.</td>
</tr>
<tr>
<td>50-70%</td>
<td>Altered mental status, delirium.</td>
</tr>
</tbody>
</table>

Prehospital Treatment

- High-concentration O₂.
- Remove offending agents.
- Methylene blue (accelerates the enzymatic degradation of METHb) is antidote.

CO and Cyanide

- Parts of cyanide antidote (amyl nitrite) induce methemoglobinemia.
- Cyanide antidotes and carbon monoxide (CO) can elevate COHb and METHb, reducing O₂ capacity of blood.
- Sodium nitrite should be avoided for combination cyanide/CO poisonings when SpCO >10%.
- Hydroxocobalamin converts cyanide to cyanocobalamin (Vitamin B₁₂) which is renally-cleared.

Financial Disclosure

This program was prepared with an unrestricted grant from Masimo. Masimo did not control content.

Credits

- Content: Bryan Bledsoe, DO, FACEP
- Art: Robyn Dickson (Wolfblue Productions)
- Power Point Template: Code 3 Visual Designs
- The following companies allowed use of their images for this presentation:
 - Brady/Pearson Education
 - Scripps/University of California/San Diego
 - JEMS/Brook Wainwright
 - Bryan Bledsoe, DO, FACEP
 - Masimo, Inc.

This is a product of Cielo Azul Publishing.